a2 United States Patent

US006886148B2

10y Patent No.: US 6,886,148 B2

Solomon 45) Date of Patent: Apr. 26, 2005
’
(549) METHOD AND SYSTEM FOR DISPLAYING 5,760,783 A 6/1998 Migdal et al. 345/430
VLSI LAYOUT DATA OTHER PUBLICATIONS
(75) Inventor: Jeffrey M. Solomon, Millbrae, CA IC Station Stream View by Mentor Graphics Product
Us) Description Data Sheet, 2 pp.
(73) Assignee: The Board of Trustees of the Leland Virtuoso Layqut .Editor by Cadence Design Systems, Inc.
Stanford Jr. University, Stanford, CA Product Description Data Sheet, 3 pp.
(US) * cited by examiner
(*) Notice: Subject. to any disclaimer,. the term of this Primary Examiner—M. Tran
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm—Fleshner & Kim, LLP
U.S.C. 154(b) by 89 days.
57 ABSTRACT
(21) Appl. No.: 10/314,957 A VLSI layout editor and method for using same that
(22) Filed: Dec. 10. 2002 increases display and re-display speed and accuracy uses
’ ’ properties inherent to VLSI layouts that allows them to be
(65) Prior Publication Data displayed efficiently and accurately independent of the
US 2003/0076722 A1 Apr. 24. 2003 canonical expression of the VLSI design. The VLSI layout
pr- <% editor and methods for using same use precomputed images
Related U.S. Application Data that each represent a portion of the VLSI layout, a hierarchy
cache that includes multiple LOD versions of selected
(63) Continuation of application No. 09/901,028, filed on Jul. 10, sub-des.lgn§ in the pre-corpputed images, and ?eleded direct
2001, now Pat. No. 6,493,858. determination of the viewable representation from the
(60) Provisional application No. 60/278,001, filed on Mar. 23, canonical expression for at least one LOD. Apparatus and
2001. methods according to the present invention can render a
(51) T CL7 oo GOGF 17/50 particular type of data whose canonical form is smaller than
(52) US.CL 716/11; 716/3 its corresponding displayed image thereof when the dis-
(58) Field of Search """""""""""""""""" 71,6 11, 3 played image has geometric properties that allow heuristics
""""""""""""""""""""" ’ and rasterization for dynamic and accurate expansion using
(56) References Cited selected combined techniques. Texture mapping and mip-

U.S. PATENT DOCUMENTS

mapping can be used to accurately reduce, expand and
reorder layers in a viewable image expanded from a canoni-
cal expression of the VLSI layout.

4,783,749 A * 11/1988 Duzy et al. 364/491
5,086,477 A * 2/1992 Yuetal ...eevveeriernennnnn 382/8
5,481,717 A 1/1996 Gabouryc.cccceecnee. 395/700 47 Claims, 17 Drawing Sheets
Start §900
Read the VLSI Layout from the mass storage device into 5905
main memory.
Initialize the pyramid structure and compute the LOD s910
parameters.
lTnitialize the hierachy cache and compute the hierarchy so15
data.
8935 l $920 5960
Perform an LOD
Create the calculation to Walt for the
CT Jtexture data. determine which viewpoint to [e—
| pyramid level is change.
¥ appropriate.
No
$950
Draw polygons
to draw the Yes for drawing No— d"ed‘.:"ylw the
layout exist? lextures? isplay.
Y
Y sean
Draw the textures
— data to the

screen.

U.S. Patent Apr. 26, 2005 Sheet 1 of 17 US 6,886,148 B2
VLS| Layout Editor System o 100
148
Display
Devices Mass108
Storage
Device
146 —
Keyboard
101!
> Bus 1
142
Cursor e
Control 70 , 120
102 : : Raster 12
Processor Subsystemn
144 Texturel 26
Hard Copy M
Device emory
: r
104 SR N
Main g i Display 130
Memory g 3 A ;
! Dlsplay1 50
Screen

US 6,886,148 B2

Sheet 2 of 17

Apr. 26, 2005

U.S. Patent

¢ Old

nun sejiL
ayoe) AyoseselH — m_.ﬂumao
o€z Bee
wn sejiL
Aowaly ainxe] — jualedsuen-jwag
bEe be
wn
ayoed s|iL anxs L . depy ebeiano)
cte 9ce
nn
. Alowa uep J8|j01u0Q AydielelH
91¢
wun
Bunepuay alnixa|
vie
nn
212 Butispusy uobAjod
Jg|jonuo)
ote
wun Aeidsig
Buipealyl-nin
011 JamaiA InoAe ISIA 81¢ st

US 6,886,148 B2

Sheet 3 of 17

Apr. 26, 2005

U.S. Patent

—— (z21) uonisuesy abesn ejeq AydielsalH

€ Old

I T M TV R [F DY R
N R ;oa "o
Wt ot e S T ' o
' oo '
, .

coge

//////////////////////7///////////////////////

//

g0¢

S

9

(11) uomisues] QO7 sainxa]/suobAiod -

““Joe

\\\\\\\\\\\\\\\\\
_
ove i

aon

\

\
N\

(e) uomisuel) s|aAe paindwiodaid -~

80¢€

U.S. Patent Apr. 26, 2005 Sheet 4 of 17 US 6,886,148 B2

US 6,886,148 B2

Sheet 5 of 17

Apr. 26, 2005

U.S. Patent

502

B

US 6,886,148 B2

Sheet 6 of 17

Apr. 26, 2005

U.S. Patent

QL "Old

uaunnge je 10119
- pazuieisel yjog

d/ ‘Ol

pazuajsel 1091 doj

V. Old

lahe| awes ay)
wol} sj0oy OM |

At B

3y R - i 2,

S T R
iy o .‘N.L.. i

Aok K E sV AL g
Pk .\ B X Y .

S P e e

s » . - i
e s s v AFY
.4“... ,W.,%.r W‘ 3l -

S T,
h L % _‘@. &
3 A
B % FEpL,. 7 2]
| 53 AN e Ay R il o b7 S Ok
.

»1*....“. ol

o 2 k..vm.eu‘ : ..\.uﬂhn.‘ , 7.
O BT S et B

902

U.S. Patent Apr. 26, 2005 Sheet 7 of 17

802

Sub-design with 3 layers (LOD 0)

\ 804 -

OD at T1 transition point. Each sub-
design layer has a coverage map
associated with it.

US 6,886,148 B2

LODs between LODO
and T1 are not shown.

N N\ |
806
Next LOD
\ l
FIG. 8 —
\

810
Highest LOD

U.S. Patent Apr. 26, 2005 Sheet 8 of 17 US 6,886,148 B2

Read the VLS! Layout from the mass storage device into S905
main memory.
Initialize the pyramid structure and compute the LOD $910
' parameters.
!
Initialize the hierachy cache and compute the hierarchy s
data. 915
8935 5920 5960
I Perform an LOD
Create the calculation to Wait for the
[ltexture data. determine which viewpoint to
L pyramid level is change.
£ appropriate.
No
S950
data necessary R Dr.aw polygons
to draw the Yes for drawing No dlrtz’ci:;IyI;O the
ayout exist? textures? pay.

Yes
J $940

Draw the textures
data to the
screen.

¥

FIG. 9

U.S. Patent

Apr. 26, 2005

Sheet 9 of 17

(. Stat)s1000

Compute the utility of each
sub-design.

S1010

Rank each sub-design
from highest to lowest in
order of the computed

utility.

y S1015
Traverse this sorted list

Compute the
hierarchy cache
coverage maps for
this sub-design
and subtract its
cost from the
available pool.

51025

«—No

FIG. 10A

>

starting from the highest
unmarked sub-design.

S1020

as all the memoryin
the hierarchy cache
been used?

US 6,886,148 B2

S1005

U.S. Patent

510015

Apr. 26, 2005

Sheet 10 of 17

Y
Compute the utility of each

US 6,886,148 B2

S10005

sub-design.

Y S1001

Traverse this sorted list

starting from the highest

$10025

Mark this sub-
design for pre-
rasterization and
subtract its
memory cost from
the available pool.

- NO

unmarked sub-design.

Rank each sub-design
from highest to lowest in
order of the computed
utility. Each sub-design is
unmarked.

$10020

all the memony_in
the hierarchy cache
been marked as
used?

S10030

Yes
h 4

A

Traverse all marked sub-designs

510040

Return this sub-design's memory
cost to the available pool and
unmark this sub-design.

Yes

Was any sub-design

Any more marked sub-

+Yes

sub-design's
parents also
marked?

No

designs to visit?

No
S10050

unmarked?

510055

No
A 4

For each marked sub-design,
compute its hierarchy cache
coverage maps.

]

Done S10060

FIG. 10B

U.S. Patent Apr. 26, 2005 Sheet 11 of 17

In front to back layer order,
draw each polygon opaquely.
Only draw to an area not
already covered by any
previous polygon.

Semi-transparent

rendering? S

Yes
v

In back to front order, draw
each polygon with a user-
defined transparency. Only
draw to an area already
covered by any previous

polygon.

Yes

> Done S1120

S1105

10

S1115

US 6,886,148 B2

FIG. 11

U.S. Patent Apr. 26, 2005 Sheet 12 of 17 US 6,886,148 B2

51200

$1205 51210

Down sample from

these tiles using a

box filter to create
the data.

Do the necessary
tiles "underneath" this
ile exist in the cache”

Yes»

No
L, si215

Create the tile using the
selected rendering style.

A
S1220 | Done }«

FIG. 12

U.S. Patent Apr. 26, 2005

51310

Sheet 13 of 17 US 6,886,148 B2

Com o

lterate over each layer,
from front to back, for
each layer:

y

Set all texel values to S1305

Zero.

S1315 |

For each polygon in a

| layer, rasterize it to find

its coverage over each
texel it overlaps.

S1320
For each fragment and

S1330

Set the layer identifier for
the texel to the layer ID of
the fragment.

No
S1345 [

Combine the texel value
and the fragment
assuming independent
overlap.

oes the layer ID
this texel match the
D of this fragmen

each texel that it
overlaps:

$1340

Combine the texel value
and the fragment
assuming disjoint overlap.

fragments to
process?

polygons to
process?

layers to
process?

U.S. Patent

Apr. 26, 2005 Sheet 14 of 17

(Start)s1400

US 6,886,148 B2

Set all texel values to zero.

S1405

l

| lterate over each layer, from back to front, for each

layer:

S1410

A 4

Set scratch coverage map values to zero.

S1415

I

For each polygon in a layer, rasterize it to find its
coverage over each texel it overlaps.

S1420

!

For each fragment, accumulate the texture
fragments into the scratch coverage map.

S1425

Any more fragments to
omposite in this polygon?

Composite the scratch coverage map values into
the final texture

S1440

S1445
ny more layers to

process?

No

/’—j—\
(Dore)s1450

FIG. 14

U.S. Patent Apr. 26, 2005 Sheet 15 of 17 US 6,886,148 B2

{ Start) S1500

S1505

For each layer to be S1515
composited

Rasterize and
composite all
polygons, ignoring
hierarchical
information,
according to the
rendering sytle.

Visit the relevant hierarchical S1520
sub-designs
For each fragment of S1525
hierarchy data

Lomposite the fragment | 51530
information according to the
rendering style

Any more hierarchica

fragments? 515835

No

b 4

Rasterize and composite the $1540

fragments not contained in
any precomputed hierarchy
according to the rendering
style.
[

S1545
ny more layers

process?

Np FIG 15
(Done)81550

U.S. Patent Apr. 26, 2005 Sheet 16 of 17 US 6,886,148 B2

.fﬁ ""'ﬁ:_-.«,

T Ty

21% AEEN RULX AARELR
A w‘ﬁﬂ o = o

3
gl
’;l

B ey

[ORE I

LS
b

e rfryiatts

e lllllll;=;;§=lll
PENRUNERENRNPESINNBY

TR A T e S A §
m

TS~ TR AR ey -FumA . 8

FIG. 168

!
PN
Sy
s

AR
13285 328y

Taapph momecve

1 riedllie
R il
Hiyldariy

ST T in-l-iitiii
A tENEEaREaN ::z-“ Lt L

33 4 =
:'j'}= arerriatwtarmetoas :gs- ..w=
'.‘: . =3 ooyl < ‘—-'!_E: |
33 8 5
a? - LR vYe rw

-
EEANEANEARREAARS NN LN L ENsSEssEnyyEREwES
-t*i.,_m -_mig;%-% " gt | B S1L .
WA Lo
3 R

FIG. 16A

f»-?l:ml ‘M;?ﬂ =

boues

‘qmnmm

U.S. Patent Apr. 26, 2005 Sheet 17 of 17 US 6,886,148 B2

NEY
e

S~

4, 3
% U E

—

TE 1;—., Samgepterin- -

:: t ~‘ Y -.‘r’ .-\-.-- 3 ; PS5 i) 'u '1‘-‘:*" | :. B .,.':, -

Le

Liad
&,
.
£
o

{

it £

i

e Tty -y

R ; Sk i
oL RESEhR

(T AU TIREAL Anng L &

FIG. 17A

-

@,

ois
b

i

o

v

HEEEE

Eh

sk

ST
prgret

BT

“ s
PRI
| peidiy

(ar ek

e
ddibrenw

'U';;v:x Raft s3]

vy,
S E S D
st

Rany

L

e ¥ = ey

SRR TR ”ﬁ?ﬂ, R]
A et s B Slsk B L

US 6,886,148 B2

1

METHOD AND SYSTEM FOR DISPLAYING
VLSI LAYOUT DATA

This application is a Continuation of application Ser. No.
09/901,028 filed Jul. 10, 2001 (now U.S. Pat. No. 6,493,
858), and claims priority to U.S. Provisional Application
Ser. No. 60/278,001, filed Mar. 23, 2001, whose entire
disclosure is incorporated herein by reference, and is subject
to a contract made by Defense Advanced Research, Contract
No. RFP-MOA904-98-R-5855.

BACKGROUND OF THE INVENTION

1. Field of the Invention

Method and apparatus to display a VLSI layout design,
and in particular, a CAD/CAM method and apparatus that
displays a VLSI design in photo-realistic detail and in
real-time.

2. Background of the Related Art

Computer systems are most always used for the display of
data in VLSI designs. The amount of data to display can vary
from design to design, and the largest designs can contain
hundreds of millions of separate pieces of information.
Manipulation of the design database is part of the design and
manufacturing of VLSI chips. At some point in the design,
it is necessary to view the data in a graphical form on a
display screen. A VLSI layout viewer and/or editor is used
for this task.

A VLSI layout viewer reads received data descriptions of
VLSI designs including sizes and locations of elements
(e.g., polygons) on each of a plurality of layers in the design.
The VLSI layout viewer generates images representing a
view of the entire (or specific subset of selected layers) at
various magnifications (scales), and draws the images on a
display screen. Further, the VLSI layout viewer generates
images representing various re-orderings of the layers (or a
subset of the layers) of the VLSI design. For example, a
specific layer can be brought to the front for viewing.

A VLSI layout editor is also a VLSI viewer, however the
VLSI editor also allows for the modification of the data in
the design. Both an editor and a viewer are generally used
to display the VLSI data on a screen.

A first related art VLSI layout viewer displays for any
viewpoint by iterating over all features visible for that
viewpoint and simply drawing all the features to the display
screen. At magnification (or zoom), this process can take
minutes to draw an entire image. Additionally, since many of
the features of the image are sub-pixel and/or fractional-
pixel in dimension, the features appear incorrect, or
“aliased” in the final image since the features will be drawn
on pixel boundaries.

A second related art technique modifies the first to speed
the drawing process by choosing not draw anything in
certain areas of the design. Instead of drawing the details of
all of the features, a solid box is drawn that represents that
entire area. Drawing one solid box is much faster than
drawing each smaller feature. However, the image quality is
decreased, and the image is inaccurate and does not
resemble a photo-realistic image.

A third related art technique simply draws less, for
example, instead of drawing millions of features, only a
fraction of the features are drawn. The criteria used by the
third related art technique as to whether a selected feature is
drawn is determined by randomly selecting every Nth fea-
ture (e.g., N=10). The assumption is that random selection is
as good as any other criteria. The drawing speed is

10

15

20

25

30

35

40

45

50

55

60

65

2

increased, but it does not increase by a factor of N since each
polygon still needs to be tested randomly for display.

A fourth related art technique to speed up the VLSI
drawing process is to only draw features that will appear on
the screen as a certain size or larger. The fourth related art
technique works no matter the size of the VLSI design
because all the features will continue to scale down. As a
drawing editor zooms out to higher scales, all features get
smaller. A threshold is set and features that will appear less
than N pixels on the screen are not drawn. For example, N
is set to 1, then any feature less than 1 pixel on a side will
be discarded. This method of culling speeds up the drawing
process, but generates inaccuracies in the image.

Afifth related art technique is to determine which features
are not visible at all and then, those features are not drawn.
Features correspond to different layers of a VLSI layout and
can be viewed in different stacking orders. That is, one layer
may appear (on the display) as “above” or “below” another
VLSI design layer. If one layer is going to appear above
another layer, then the underneath layer is not drawn because
it is occluded by the “above” layer upon display when the
entire VLSI image is drawn.

A sixth related art technique is to draw everything but
allow the user to halt the drawing process while the drawing
is still ongoing. Thus, an arbitrarily long redraw process can
at least be stopped by a user at any time. The related art
VLSI layout editors use this technique to specifically
address the problem of slow redraw times.

A seventh related art technique is to convert a VLSI
design into an image and to view the image of the design.
However, the size of the image file created when the design
is converted to an image could be terabytes, and
consequently, the available techniques to view it as an image
are limited. One related art option is a clipmap image
disclosed in U.S. Pat. No. 5,760,783. However, using a
clipmap or any other pure image viewing solution disad-
vantageously generates a transformation cost (both in terms
of computation time and memory cost), and the inability to
change the image quickly and easily once the transformation
has been done.

As described above, the related art VLSI layout viewers
have various disadvantages. The related art VLSI layout
viewers have slow display and re-draw times for VLSI
designs. Further, such problems will get worse as the num-
ber of polygons in modern VLSI layouts reach into to the
tens or hundreds of millions and displaying each of those
polygons at once can take terabytes of data. In addition,
inaccuracies occur in the display of the designs in an attempt
to increase display speed. When viewed at low
magnification, most of the polygons can be smaller than a
single pixel in one or both dimensions, and drawing the
polygons without proper filtering produces noticeable alias-
ing artifacts.

The above references are incorporated by reference herein
where appropriate for appropriate teachings of additional or
alternative details, features and/or technical background.

SUMMARY OF THE INVENTION

An object of the invention is to solve at least the above
problems and/or disadvantages and to provide at least the
advantages described hereinafter.

Another object of the present invention is to provide a
layout viewer and method of using same that uses a pre-
computed image that represents some portion of the VLSI
design.

Another object of the present invention is to provide a
layout viewer and method of using same that uses previously
drawn portions of a VLSI design in a currently drawn VLSI
design.

US 6,886,148 B2

3

Another object of the present invention is to provide a
layout viewer and method of using same that provides
real-time navigation of a VLSI layout independent of the
size of the design.

Another object of the present invention is to provide a
layout viewer and method of using same that provides an
accurate photo-realistic representation of the VLSI layout on
a display screen.

Another object of the present invention is to provide a
layout viewer and method of using same that displays a
VLSI layout without aliasing artifacts.

Another object of the present invention is to provide a
layout viewer and method of using same that provides a
representation of the VLSI layout independent of a size of
the VLSI layout.

Another object of the present invention is to provide a
layout viewer and method of using same that uses a direct
rendering of polygons and drawing of texture data to display
images of a VLSI layout.

Another object of the present invention is to provide a
layout viewer and method of using same that uses different
methods of display for a VLSI design depending on the level
of magnification.

Another object of the present invention is to provide a
layout viewer and method of using same that provides
accurate real-time navigation of a displayed representation
of a canonically expressed VLSI design independent of the
size of the displayed image representation using a bounded
representation of the canonical expression for display.

Another object of the present invention is to provide a
layout viewer and method of using same that eliminates long
redraw problems and incorrect depictions when rendering a
representation on a display screen of a canonically expressed
VLSI layout.

Another object of the present invention is to provide a
layout viewer and method of using same that determines and
pre-computes displayable representations of sub-designs of
the VLSI design for a subset of the possible displayable
magnifications.

Another object of the present invention is to provide a
layout viewer and method of using the same that renders the
data from a VLSI layout in either an opaque or semi-
transparent style.

Another object of the present invention is to provide a
VLSI layout viewer and method of using the same that
draws VLSI data opaquely so that data stacked “above”
occludes data stacked “below”.

Another object of the present invention is to provide a
VLSI layout viewer and method of using the same that
draws VLSI data semi-transparently so that data will be
drawn with an opacity that allows data stacked “below” to
be visible relative to data stacked “above.”

Another object of the present invention is to provide a
VLSI layout viewer and method of using the same that
draws VLSI data semi-transparently so that data drawn with
nothing “underneath” appears opaque.

To achieve at least these objects and other advantages in
a whole or in part and in accordance with the purpose of the
present invention, as embodied and broadly described, there
is provided a VLSI layout editor that includes a first memory
that stores a canonical expression of a VLSI layout having
a plurality of layers and a display controller coupled to the
first memory that generates a displayable representation of
ordered layers of the VLSI layout that tracks changes in a
user viewpoint, wherein the displayable representation

10

15

20

25

30

35

40

45

50

55

60

4

includes a precomputed image that represents a portion of
the VLSI layout, and wherein the precomputed image is
used in two or more user viewpoints.

To further achieve at least these objects and other advan-
tages in whole or in part and in accordance with the purpose
of the present invention, as embodied and broadly described,
there is provided a method of viewing a VLSI layout design
that includes loading a VLSI layout design into a first
memory, determining a number of LODs from a base
representation level to a top level of a chip pyramid accord-
ing to the first representation, determining a first transition
threshold and second transition threshold at a higher LOD
from the first transition threshold that subdivide the chip
pyramid into three sections, and displaying a representation
of the VLSI layout design using a first displaying technique
below the first transition threshold, a second displaying
technique between the two transition thresholds and a third
displaying technique above the second transition.

To further achieve at least these objects and other advan-
tages in whole or in part and in accordance with the purpose
of the present invention, as embodied and broadly described,
there is provided a method of rendering a viewable repre-
sentation of an integrated circuit (IC) layout that includes
loading a canonical form of the IC layout into a first
memory, determining a chip pyramid structure having a
plurality of levels of detail (LOD) from a base LOD to a top
LOD according to the canonical form of the IC layout,
determining hierarchy data for selected sub-designs in the
canonical form and storing the hierarchy data in a second
memory, determining a selected LOD in the chip pyramid to
display the IC layout according to an input viewpoint,
displaying the IC layout using stored sub-images of selected
portions of the canonical form when the selected LOD is
above a first threshold, and displaying the IC layout by using
the canonical form to directly display polygons when the
selected LOD is below the first threshold.

Additional advantages, objects, and features of the inven-
tion will be set forth in part in the description which follows
and in part will become apparent to those having ordinary
skill in the art upon examination of the following or may be
learned from practice of the invention. The objects and
advantages of the invention may be realized and attained as
particularly pointed out in the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in detail with reference to
the following drawings in which like reference numerals
refer to like elements wherein:

FIG. 1 is a diagram that illustrates a first preferred
embodiment of a layout editor for a VLSI design according
to the present invention;

FIG. 2 is a diagram that illustrates a block diagram of a
preferred embodiment of a control system for the layout
editor of FIG. 1;

FIG. 3 is a diagram that illustrates a preferred embodi-
ment of a chip pyramid having multiple regions of opera-
tion;

FIG. 4 is a diagram that illustrates a tiled texture pyramid;

FIG. 5Ais a diagram that illustrates polygons aligned with
a texel grid;

FIG. 5B is a diagram that illustrates polygons not aligned
with a texel grid;

FIG. 6 is a diagram that illustrates an exemplary coverage
map for the darker horizontal polygons in FIG. 5B where
darker areas represent increased coverage;

US 6,886,148 B2

-

d

FIGS. 7A-7C are diagrams that illustrate coverage map
representations of adjacent polygons;

FIG. 8 is a diagram that shows an exemplary hierarchy
data format;

FIG. 9 is a flowchart that illustrates a preferred embodi-
ment of a method for operating a layout editor in accordance
with the present invention;

FIG. 10A is a flowchart that illustrates a preferred
embodiment of a method for determining a hierarchy cache;

FIG. 10B is a flowchart that illustrates another preferred
embodiment of a method for determining a hierarchy cache;

FIG. 11 is a flowchart that illustrates a preferred embodi-
ment of a method for directly rendering polygons;

FIG. 12 is a flowchart that illustrates a preferred embodi-
ment of a global texture tile creation process;

FIG. 13 is a flowchart that illustrates a preferred embodi-
ment of a method for creating opaque texture tiles;

FIG. 14 is a flowchart that illustrates a preferred embodi-
ment of a method for creating semi-transparent texture tiles;

FIG. 15 is a flowchart that illustrates a preferred embodi-
ment of a process for using hierarchy data in texture tile
creation;

FIGS. 16A and 16B are diagrams that respectively illus-
trate two drawings of a VLSI design where FIG. 16A shows
a complete design and FIG. 16B shows only the contents of
a hierarchy cache; and

FIGS. 17A and 17B are diagrams that respectively illus-
trate two drawings of a VLSI design where FIG. 17A shows
a synthetic image of a design generated according to a
preferred embodiment of the present invention and FIG. 17B
shows computer generated images of an actual die photo-
graph of the design.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

A preferred embodiment of a VLSI layout editor accord-
ing to the present invention will now be described. FIG. 1 is
a block diagram of a VLSI layout editor system 100 that
includes a graphics subsystem 120 for generating display
images for a display system 130 according to the present
invention.

System 100 includes a mass storage device 108 and a
VLSI layout viewer 110, which includes a host processor
102 and a main memory 104 coupled through a data bus 101.
The mass storage device 108 is preferably used to store vast
amounts of digital data. The mass storage device 108
initially stores one or more VLSI layouts in a canonical
form. For example, the mass storage device 108 can include
one or more hard disk drives, floppy disk drives, optical disk
drives, tape drives, CD ROM drives, or any number of other
types of storage devices having media for storing data
digitally. For ease of description, this application will here-
after use the term VLSI layout viewer when describing
viewing or corresponding editing capabilities of preferred
embodiments according to the present invention since modi-
fications include drawing and updates to the displayed and
underlying canonical forms of a VLSI layout.

Different types of input and/or output (I/O) devices are
also coupled to the VLSI layout viewer 110 through the bus
101 for the benefit of an interactive user. An alphanumeric
keyboard 146 and a cursor control device 142 (e.g., a mouse,
trackball, joystick, etc.) are used to input commands and
information. The output devices can include a hard copy
device 144 (e.g., a printer or plotter) for printing data or

10

15

20

25

30

35

40

45

50

55

60

65

6

other information onto a tangible medium, and additional
display devices 148 can be coupled to the VLSI layout
viewer 110 to provide for multimedia capabilities.

The graphics subsystem 120 is coupled between the VLSI
layout viewer 110 and the display system 130 and includes
a raster subsystem 124 coupled to a texture memory 126.
Processor 102 provides the graphics subsystem 120 with
descriptions (e.g., polygons, textures, sub-element hierarchy
textures, etc.) of a display image in object space. The
graphics subsystem 120 transforms the description of the
image (and the objects displayed therein) from object space
into screen space. The display system 130 includes a display
device having a display screen 150.

Raster subsystem 124 maps texture data from texture
memory 126 to pixel data in the screen space (e.g.,
polygonal) descriptions. Pixel data and texture data are
eventually filtered, accumulated, and can be stored before
output transmission to the display system 130, the display
screen 150 or the display devices 148. The digital data
representing the output display image can also be saved,
transmitted over a network, or sent to other applications.

The preferred embodiment of the VLSI layout editor
system 100 is described in terms of a system environment.
Description in these terms is provided for convenience only.
It is not intended that the invention be limited to application
in this example environment. In fact, after reading the
following description, it will become apparent to a person
skilled in the relevant art how to implement the invention in
alternative environments.

Graphics data (e.g., a polygonal description or a pre-
computed portion of a display image or scene) is provided
from the viewer 110 through the data bus 101 to the graphics
subsystem 120. Alternatively, as would be apparent to one
skilled in the art, at least some of the functionality of
generating a polygonal or pre-computed description could
be transferred to the computer graphics subsystem as
desired.

The viewer 110 passes the pre-computed (e.g., texture)
data to the graphics subsystem 120 and can use the texture
memory 126 to generate and manage portions of the display
image on the display screen 150 as described below. Includ-
ing the software and/or hardware in the processor 102 for
generating and managing the display image of the VLSI
layout is one example for implementing the preferred
embodiment of the VLSI layout editor system 100. Separate
modules or processor units for generating and managing the
display image of the VLSI layout could be provided along
the data bus 101 or in the graphics subsystem 120, as would
be apparent to one skilled in the art considering this descrip-
tion.

A preferred embodiment of the VLSI layout viewer 110
according to the present invention will now be described. As
shown in FIG. 2, the viewer 110 includes a controller 210,
a main memory 104, a polygon rendering unit 212, a texture
rendering unit 214, a hierarchy controller unit 216, multi-
threading display unit 218, a coverage map unit 226 that can
include opaque and semi-transparent tile units 228, 229. The
viewer 110 further includes texture tile cache 232, texture or
pyramid cap memory 234 and hierarchy cache 236 prefer-
ably located in the main memory 104.

As shown in FIG. 1, the VLSI layout viewer 110 is
preferably implemented on the processor 102 including the
main memory 104. However, the VLSI layout viewer 110
can also be implemented on a special purpose computer, a
programmed microprocessor, microcontroller and peripheral
integrated circuit elements, an ASIC or other integrated

US 6,886,148 B2

7

circuit, a hardwired electronic or logic circuit such as a
discrete element circuit, a programmable logic device such
as a PLD, PLA, FGPA or PAL, or the like. In general, any
device on which a finite state machine capable of imple-
menting a chip pyramid including transitions T1-T3 and the
flowcharts shown in FIGS. 9-15 can be used to implement
the VLSI viewer 110.

The viewer 110 preferably reuses data for an image
displayed on the screen 150 of the VLSI layout between
multiple depictions with/without combinations of magnifi-
cations changes, viewpoint changes, layering changes and
transformation changes (e.g., colors selected) on the screen
150. The selected portions of the data being reused are
preferably precomputed and accurately represent portions or
sub-elements of the VLSI layout (e.g., textures). Multiple
magnifications of selected sub-elements in the VLSI layout
are preferably determined according to a design or user
viewpoint and are pre-computed (e.g., a hierarchy) by the
viewer 110. The viewer 110 preferably provides a user
real-time navigation of a VLSI layout independent of the
size of the design, and creates an accurate representation of
the design at any magnification using bounded resources in
the implementation.

To more clearly delineate the present invention, an effort
is made throughout the specification to adhere to the fol-
lowing term definitions as consistently as possible. A
“canonical form” or native form of a VLSI layout is a
mathematical description of locations of every element (e.g.,
polygons) on all layers of the integrated circuits (ICs) on the
corresponding VLSI design or instantiated in a VLSI chip.
The memory resources required to store the canonical form
of an VLSI layout, such as a corner-stitched data structure,
is typically very small compared to the memory resources
required to hold a fully expanded image of the VLSI layout.
Further, a VLSI layout as used hereafter is intended to refer
to any layout used to manufacture any integrated circuit (IC)
not only an integrated circuit with a certain number of
elements.

A “texture” is a static image including elements called
texels. The values contained in each texel can be any type of
visual information such as intensity, transparency or, most
commonly, red green blue (RGB) triplets. A “texel” in a
texture can be distinguished from a pixel on the display
screen 150 in that a texel can represent more or less area than
a pixel depending on the texture’s final scaled size on the
display screen 150. “Texture image data” is any computer
memory image that can be used again, which can be the
opposite of drawing to the screen (e.g. frame buffer) and
discarding the contents. Examples of textures include com-
puting images in the CPU memory for repeated use with
graphics hardware and allowing the graphics unit to com-
pute the image but then saving it back to the CPU for
repeated use or allowing it remain on graphics unit but in a
way that it can be re-used.

“Texture mapping,” in a simple form, is a way to apply a
texture as a decal to a polygon. “Mipmapping” is a way to
specify down-sampled pixel views of a texture that are used
to represent the texture at successive multiple “levels of
detail (LOD)”. A “texture MIP-map” refers to conventional
MIP-map representations of a texture map at successive
multiple LODs. Each down-sampled representation of a
texture in a one level higher LOD of a mipmap is ¥4 the size
of the texture it was sampled from. Thus, the multiple LODs
provide varying degrees of resolution. When abstractly
viewed with each mipmap level stacked on top of each other,
the whole data structure is known as a mipmap pyramid or
simply as a “mipmap.”

10

15

20

25

30

35

40

45

50

55

60

65

8

The size of a modern microprocessor, when viewed as an
image, or an image mipmap is extremely large. A VLSI
layout for a modern microprocessor that is 20 mmx20 mm
on a side with a grid resolution of 0.01 um leads to a base
image of width and height of 2 million texels. If each texel
were 16 bits, the size of just the base image would be 64
terabytes.

When drawing a polygon with a mipmapped texture, the
final pixel values of the polygon are computed by determin-
ing the level of detail (LOD) on a per pixel basis. The LOD
is the ratio of the pixel area to texture area in the texture’s
base units, starting from a base level or LOD zero (0). For
example, a 100x100 texel texture drawn as a flat 100x100
pixel image in a display screen would be a LOD 0 (i.e., one
texture texel maps to one screen pixel) and would be
rendered or drawn by using the base mipmap level. If the
same texture were to be mapped to an area 50x50 pixels in
a scene, the first mipmap level, which is four times smaller,
would be most appropriately used. When the image is to be
rendered at an intermediate size (e.g., 75x75 pixels), an
application could either reduce the first level, magnify the
second level, or blend the two mipmap levels. To render a
2D image parallel to the screen, as is the case with IC
layouts, the same LOD applies to all pixels.

To correctly down-sample an image, an ideal low-pass
filter (a sine filter) can be applied that removes the appro-
priate high frequencies. Usually though, an approximation
of the sinc filter, a box filter is used for such operations
because the box filter requires much less computation, yet
still provides acceptable quality. The definition of the box
filter used in the present invention is to average the RGB
values in a 2x2 square of texels to obtain the new down-
sampled value.

Preferred embodiments according to the present invention
use the synthetic nature of IC layouts and do not simply
draw the layouts solely as images or polygons. The preferred
embodiment of the VLSI layout viewer 110 preferably uses
multiple transformations according to the canonical form to
rapidly and accurately draw the VLSI design. The viewer
110 preferably draws an input canonical form using a novel
structure of a chip pyramid.

FIG. 3 illustrates a preferred embodiment of a primary
structure for displaying a VLSI design according to pre-
ferred embodiments of the present invention. As shown in
FIG. 3, a chip pyramid 300 includes information about
where different types of texture data will preferably be used
in rendering, and the chip pyramid 300 also includes a
region where no texture data is used. As shown in FIG. 3, the
chip pyramid 300 preferably has four distinct regions, each
delineated by a LOD. Each of these L.ODs are computed at
initialization and based on the size of a corresponding VLSI
design, the size of the display screen and heuristics of the
design data itself. Each higher LOD in the chip pyramid 300
is preferably one quarter the resolution of the level below.
Although L.ODs “higher” in the chip pyramid 300 actually
have lower levels-of-detail, the LODs having less resolution
will be referred to as higher in the pyramid.

Dimensions of LOD 0 302 are preferably computed
directly from the bounding box of the VLSI design. The
dimensions are independent of the number of elements in the
VLSI design and are determined from the smallest box that
covers every element of the design or some other suitable
predefined area of the design.

Dimensions of an LOD of a first transition T1 304 are
computed so that above the first transition T1, texture data
is used, while below the first transition T1, the design

US 6,886,148 B2

9

elements are drawn directly. The first transition T1 is pref-
erably chosen at a point where, above the first transition T1,
it becomes unprofitable to draw elements directly because
visually inaccurate aliasing artifacts become noticeable and
because the redraw time can become sufficiently slow. For
example, a user viewpoint can start at LOD 0 and move up
LODs in the chip pyramid 300. As the user viewpoint moves
up, more and mote elements become visible and each of the
visible elements apparently becomes smaller. At some point,
the viewpoint becomes far enough so that two disadvantages
occur. The first is that the polygons being drawn become less
than a pixel in any or all dimensions and are drawn in an
aliased fashion if drawn directly to the screen. The second
disadvantage is that the graphics capabilities of the computer
systems may not be able to draw the entire screen fast
enough to maintain the illusion of animation. The second
disadvantage may decrease as computer systems drawing
capabilities rise with technological advances, and the ability
to draw more and more elements at once will increase.
However, VLSI designs are continuing to increase in com-
plexity and can offset technological advantages. Ultimately,
the first transition T1 of the chip pyramid 300 allows
drawing elements in an unaliased and accurate fashion.
Accurate means taking measures to ensure that the non-
integet scaled dimensions of objects are modeled accurately.
The LOD of the first transition T1 304 is preferably deter-
mined by finding the average minimum dimension of each
element in the design and determining which LOD will
coincide to that dimension being too small to draw on the
screen directly. Assume, for example, in a design, that the
average smaller dimension of each element is found to be
about 50 units and the smallest desired element that is drawn
on the screen is 5 pixels. An average minimum dimension of
a polygon in this example design will be 50 units at LOD 0,
25 at LOD 1, 12.5 at LOD 2, 6.25 at LOD 3 and 3.125 at
LOD 4. Therefore, for this example, the LOD T1 is taken to
be LOD 3 since 6.25 is the smallest dimension greater than
5 pixels. The LOD T1 can be determined by the following
equation:

280D It = (ave_ mm_ dimen)/(smallest_pixel_size)

In this case, ave_ min_ dimen is 50 units and smallest__
pixel_size is 5 pixels. Preferred embodiments according to
the present invention preferably use this heuristic to deter-
mine the first transition T1. However, the present invention
is not intended to be so limited and other heuristics are
possible and may be as effective. Finally, as shown in FIG.
3, only two LOD levels in the section of the chip pyramid
300 are below the LOD of the first transition T1 302. This
is exemplary only. As illustrated in the example, the number
of LODs below the first transition T1 is solely based on the
design. Further, according to the present invention, the first
transition T1 may be omitted and texture data can be used
throughout the drawing process. However, such a drawing
process is unnecessary and wasteful at LODs less than the
first transition T1 since the inherent drawing capabilities of
the computer system are sufficient for both accuracy and
speed.

ALOD of a second transition T2 306 is also shown in the
preferred embodiment of the chip pyramid 300 of FIG. 3.
The LOD T2 306 preferably represents the transition in the
chip pyramid 300 from not using hierarchy data below to
using hierarchy data above. As described below and shown
in FIGS. 5B and 6, a portion of a design can be converted
into a coverage map. As described below and shown in FIG.
8, the coverage map information is preferably a primary
structure to store the information in a hierarchy cache such

10

15

20

25

30

35

40

45

50

55

60

65

10

as hierarchy cache 236. However, according to the preferred
embodiments, using a coverage map is only effective when
the majority of its elements are non-zero. For LODs close to
the first transition T1, average coverage maps for designs
were determined to generally be sparse, which makes the
coverage maps unprofitable to use in creating texture tile
data. For this reason alone, the second transition T2 306
delineates where computational profit occurs from use of the
hierarchy data stored in coverage map form. According to
the preferred embodiments, the LOD of the second transi-
tion T2 306 is heuristically preferably chosen two LOD
levels higher than the first transition T1. However, the
present invention is not intended to be so limited, and
alternative heuristics could choose a different way to place
the second transition T2.

A LOD of a third transition T3 is the point at which a
pyramid cap region of the chip pyramid 300 begins. The
pyramid cap preferably defines a region of the chip pyramid
300 that specifically uses precomputed image data, e.g.,
precomputed texture data. The texture data is preferably
precomputed because having some view of the design
available at all times increases drawing speed, and creating
a full zoom view of a design when a global layer and/or color
change is made increases drawing speed. The number of
LODs to include in the pyramid cap is chosen so that the
pyramid includes the LOD appropriate to display the entire
VLSI design in a window on a computer system that is the
full size of the physical computer display. In current
technology, for example, average smallest computer monitor
dimensions are approximately 640x480 pixels and average
largest computer monitor dimensions are approximately
2048x1536 pixels. When using texture data from a pyramid
cap region above the third transition T3, the texture data is
preferably taken directly from a special prescribed area of
memory. In addition, no computation on the fly is preferably
necessary since the pyramid cap region is specifically pre-
computed.

The region between the second transition T2 306 and the
third transition T3 308 is preferably the portion of the chip
pyramid 300 where texture data is computed on the fly using
hierarchy data. As shown in FIG. 3, four LODs are between
the second transition T2 306 and the third transition T3 308,
but this is only exemplary. Depending on the size of the
VLSI design, the actual number of LLODs in this region can
be arbitrary.

A highest LOD 310 on the chip pyramid 300 is preferably
chosen as the smallest allowable view of the design. It is
possible that dimensions of LOD 310 could be 1 by 1 texel,
however, it is alternatively intended to set the dimensions of
the highest LOD 310 so that the design is no smaller than
some fraction of the window size.

As shown in FIG. 3, the four regions of operation in the
chip pyramid 300 have been determined and are preferably
chosen to optimally draw the VLSI design with respect to
speed, accuracy, and system resources. In contrast, the
related art VLSI layout viewers that simply draw all features
of the VLSI design would only operate as in a region below
LOD T1 in the chip pyramid 300, which disadvantageously
causes speed and severe accuracy problems described, most
notably when viewing the design at LODs above the first
transition T1. Further, the related art clipmap would draw
the VLSI design as if operating only in the region above the
third transition T3, which disadvantageously causes an enor-
mous resource and flexibility burden on a VLSI rendering
system such as the system 100 as described above.

Functions of the preferred embodiments of the viewer 110
that implement the capability to receive and transform the

US 6,886,148 B2

1

VLSI design according to a user controlled viewpoint will
now be described. For the viewer 110 to draw a semicon-
ductor chip design, a VLSI layout is preferably first con-
verted into a corresponding chip pyramid, which is then used
by the viewer 110 to draw the canonical form of the VLSI
layout as an image on the screen 150.

Preferably, the width and height of the image is directly
computed from the size of the VLSI layout and the under-
lying grid resolution. For example, a 1 mmx1 mm layout
with a grid resolution of 1 um would have a base image
width and height of 1,000. Once the base image width and
height have been determined, the next step is to determine
at least transition points and remaining L.ODs to the top of
the chip pyramid 300.

The chip pyramid 300 preferably incorporates a “tiled
texture pyramid” (TTP) as shown in FIG. 4 that is distin-
guished from a mipmap pyramid in that each pyramid level
has an array of texture tiles where the size of each of the
tiles, in texels, is fixed. Each level of a mipmap pyramid is
thought of as one texture. For large IC layouts, the size of all
but the highest levels in the pyramid could easily eclipse not
only the hardware limits of a host platform but also the size
of the main memory 104. The tiles in the upper levels of the
TTP represent more layout area than those in lower levels
even though each texture tile physically consumes the same
amount of memory. LOD 0402, LOD 1 404, and LOD 2 406
all represent the same image but at different resolutions.
Since LOD 0 402 is a finer resolution, it consumes more
memory. Tile 408 in LOD 0 is the same physical size as tile
410 in LOD 2, but it only represents Vs of the area of the
tile 410 since it is two LODs lower in the TTP.

Using the texture tiled pyramid TTP within portions of the
chip pyramid, lets the viewer 110 define the tile size to meet
the hardware limits of the host platform. Using the TTP, the
viewer 110 creates only the portions of a chip pyramid level
that are needed at any one time. Further, the viewer 110 uses
the TTP to preferably provide a multi-threaded implemen-
tation.

The TTP is preferably used in the preferred embodiment
of the viewer 110. However, the present invention is not
intended to be so limited as to imply that the TTP repre-
sentation is the only implementation that can achieve the
desired effect.

The texture rendering unit 214 preferably creates each
texture tile by computing the values of the texels for that tile.
The texture rendering unit 214 can create the texel values by
first rasterizing at the base level, and then down-sampling.
Although accurate texel values are produced, computation
and memory cost to create a tile high up in the pyramid using
this approach are prohibitive. In a worst case of, for
example, the memory cost for the top most tile would be
equal to the base area of the VLSI layout, and the compu-
tation cost to filter down to a single tile. Preferably the
texture rendering unit 214 creates tiles high up in the
pyramid directly from the canonical expression, which obvi-
ates the requirement to rasterize at the base level.

Asimple rasterization example is shown in FIG. SA. FIG.
5A is a diagram that shows two wires 502, 506 running
horizontally, a third wire 504 running vertically, and a via
508. The coordinates of the rectangles coincide with the
texel boundaries, which corresponds to a texture tile at the
base level of the TTP. As shown in FIG. 5A, the grid
resolution of the layout and the size of the texels are equal
such that all rectangles will fall on integer boundaries.
Rasterization is direct and relatively simple because either a
rectangle covers a texel completely or not at all. The final
color of the texel is either the background color, the color of

10

15

20

25

30

35

40

45

50

55

60

65

12

a single layer, or the blended color of two or more layers
depending on the rendering style.

FIG. 5B is a diagram that shows an assortment of wires
such as wire 512 and vias such as via 514 that fall arbitrarily
on the texel grid, which occurs whenever the scaled coor-
dinates of the rectangles have non-integer values. The scale
factor is given by 2Y4°P. This case can only occur on
pyramid levels other than the base level of the chip pyramid.
As shown in FIG. 5B, the rasterization process is not as
simple. The computation of the texel’s final color must take
into account that the rectangle only partially covers the texel.
To do this, preferably the amount of coverage of a given
rectangle over a given texel is used. A basis or starting point
of coverage is the same as the well-known graphics idiom
alpha (o), which represents a color’s opacity. A color that
does not completely “fill” a texel can equivalently be
considered to partially cover a portion of the texel
(coverage), or to completely cover the texel at some opacity
(alpha). The symbol o is used to represent either the
coverage or opacity of a texel interchangeably.

FIG. 6 is a diagram that shows a coverage map derived
from the darkest horizontal wires shown in FIG. 5B. A
coverage map holds coverage information for one layer over
the equivalent layout area of the corresponding texture.
There is preferably a one to one correspondence between a
texel in a texture and a coverage map element. The coverage
map in FIG. 6 is encoded with gray scale values, darker gray
602 indicate mote coverage, lighter grey 604 indicate less.

Construction of a coverage map preferably includes ras-
terizing the rectangles from a single layer and adding their
coverage values to the map. The preferred embodiments use
the assumption that rectangles from the same layer do not
overlap so the coverage values add, and preferably saturat-
ing to one.

Using coverage and coverage maps, the coverage map
unit 226 uses compositing processes to create texture tiles.
In the viewer 110, preferably the coverage map unit 226
selectively uses two compositing techniques to create tex-
ture tiles. The first compositing technique, coverage map
compositing, uses coverage maps explicitly and is a two pass
approach. First, the target texels are zeroed, and a scratch
coverage map of the same size as the target tile is allocated.
Then, for each layer to be composited: (1) a coverage map
is created, and (2) the information in the coverage map is
used to blend that layer’s color into the final texture.

Coverage map compositing has an advantage that a dif-
ferent compositing assumption can be implemented when
combining rectangles from the same layer or different layers.
The coverage map is preferably created with the assumption
that rectangles from the same layer do not overlap while the
final blending is made and the coverage values are indepen-
dent for rectangles from different layers. However, coverage
map compositing can be computationally expensive because
for each layer to be processed, each coverage map element
is written (e.g., when initially set to zero), and read (e.g.,
when finally blended) a minimum of one time, and a read is
required of each final texel value for blending. Accordingly,
an overall computational cost of creating a texture tile can be
more related to the number of layers to process than the
number of rectangles to rasterize. However, for tiles high up
in the pyramid, when there are many rectangles to process,
the rectangle processing time to process them is greater than
or swamps out the cost of memory access, making coverage
map compositing feasible for these tiles.

The second compositing technique used by the coverage
map unit 226, direct compositing, avoids using the coverage
map (and associated computing costs) altogether. First, the

US 6,886,148 B2

13

final texel values are set to zero. Then, each rectangle is
rasterized and composited directly into the final texture.
Direct compositing has the advantage that the time to create
a tile is only related to the number of rectangles to process,
not to the number of layers. However, in direct compositing
the same assumption must be made that rectangles from the
same layer do not overlap when combining coverage values
of the same or different layers, which introduces errors
regardless of the assumption. Direct compositing is usually
slower than coverage map compositing for tiles whose
creation time are dominated by rectangle processing.
However, direct compositing can be much faster for tiles that
would have sparse coverage maps.

The opaque tiles unit 228 of the viewer 110 generates
images in a process that makes rectangles above other
rectangles completely occlude the lower tiles (beneath). The
opaque tiles unit 228 preferably performs compositing from
front (most visible) to back (least visible) using the direct
compositing technique. The viewer 110 preferably allows
arrangement of the chip layers by the user arbitrarily so the
opaque tiles unit 228 assumes that the layers have been
placed in some stacking order that determines visibility.

Using destination color (C,,,) and destination coverage
(0,), and source color (C,,.) and source coverage (t,,.), a
resulting color (C,,,) and resulting coverage (a,,,) gener-
ated by opaque compositing can be determined the follow-
ing equations:

@
@
©)

Equations (1)—(3) signify the “plus” operator with modi-
fications. The coverage a,.' is an amount of visibility for the
incoming rectangle given that the texel is already covered by
a4, As described above, direct compositing requires that
one assumption be made when combining coverage values.
The usual assumption of independent overlap is captured in
Equation 1.

When a, is 1, meaning the texel is completely “filled”,
the opaque compositing computation can be skipped
because o, will be 0. However, such a computational
shortcut is only possible because compositing was processed
from front to back. When a.,. is 0, the computation can also
be skipped because the rectangle does not add anything to
this texel. When ., is 0, the texel will have a resulting color
and coverage equal to the incoming rectangle, which cor-
responds to the first time a texel is written.

However, when the assumption of independent overlap is
applied to rectangles from the same layer that intersect the
same texel, errors can occur. FIG. 7A shows two rectangles
702, 704 from the same layer that share an edge 706 being
composited across texel boundaries. FIG. 7B shows the o,
values after the top rectangle 702 is rasterized, and FIG. 7C
shows the o, values after both rectangle 702, 704 have
been rasterized. When the second rectangle 704 is rasterized,
the a.,,.' values computed by Equation 1 are (1-0.5)0.5=0.25
along the shared edge 706, which leads to a final value of
0.75 for a,,, along the edge 706. The correct value is 1.0,
and a consequence of such compositing errors is that rect-
angles from the same layer that abut will have a line of a
different color between them. As described above, the cov-
erage map compositing avoids such errors since the cover-
age values are added during the creation of the coverage
map, which yields the correct results.

As described above, Equation 1 captures the behavior of
independent overlap of polygons. Equation 1 is correct for

)

O =(1-Cg)
))

Agsr =ChgsyTOsc

;)
Cost'=CsrtCspcllre

10

15

20

25

30

35

40

45

50

55

60

65

14

polygons on different layers, but for polygons on the same
layer, an assumption of disjoint overlap is more appropriate.
This behavior can be determined by the following equation:

Ogre'=min(1=Clyy Olgr)

@

Accordingly, the opaque tiles unit 228 preferably deter-
mines when rectangles from the same layer or different
layers are being composited by introducing an additional or
a third texel element, which is hereafter called a texel layer
identifier, for use with C,,, and o, Since compositing is
done from front to back, the texel layer identifier preferably
is initially zero and then set to the rectangle’s layer identifier
the first time that the texel is written. The texel layer
identifier is preferably an integer that uniquely identifies the
layer associated with a rectangle. Subsequently, when a
coverage value is added to that texel, a test is performed. If
the incoming rectangle is from the same layer as the texel
layer identifier then Equation 4 used, otherwise Equation 1.
The computation cost of this additional element is not high
since it only requires one additional test per texel.

However, an error still occurs in other situations.
Specifically, when three or more rectangles contribute to a
texel, and two of the rectangles are from the same layer other
than the top layer, the final texel value will be different than
if using coverage map compositing. However, this differ-
ence has yet to be noticeable. Because the difference in
quality between the two compositing strategies is negligible,
and direct compositing can be much faster, it is preferred for
the opaque rendering style.

The semi-transparent tiles unit 229 of the viewer 110
renders the layers with an opacity (Q,.,.,) as well as a
coverage. The opacity defines how transparent the layers
will appear when placed on top of one another. As described
above, a texel that has a coverage of a is the same thing as
a texel that is fully covered with an opacity of a. In the
preferred embodiment of the viewer 110, the interchange-
able opacity and coverage are preferably multiplied to
determine a final value. For example, a texel with a coverage
of ¥5 and an opacity of % is the same thing as a texel with
either a coverage or opacity of V6. Compositing is done from
back to front so the top layers are blended last giving them
the appearance of being on “top”.

The process of compositing with opacity is known as an
“over” operator. Using the same notation as the previous
section, the semi-transparent compositing can be determined
by the following equation:

Clpten =1~ (ClprendQlass) ®
Qg = e Cgre +1 (A=~ e)ty Q)
Ctst™=0ptenat OsrCorct1(1=Clprend)Cass @

When both a,, and a4, are 1, the final color is the linear
interpolation between C,_ and C,, by a,,,, However,
when o, is close to or equal to O, the final color is the
incoming color with an opacity of a,,,,, The effect of
watering down layer colors when they do not appear atop of
any other layer has been determined to be undesirable since
the layer will appear to be blended with the background
color. To reduce or eliminate such effects, a,,,,,; is defined
to set the incoming rectangle’s opacity based on the current
coverage. Now when o, is 0, the incoming rectangle will
composite opaquely, and when 1, the incoming rectangle
will composite with an opacity of a,,.,., as expected. The
effect that Equation 5 produces is that layers that appear by
themselves will be opaque while layers that overlap other
layers will appear semi-transparent. Such drawing contains

US 6,886,148 B2

15

more information and has been determined to be more
visually intuitive than only compositing semi-transparently.
In addition, the layer identifier strategy from direct compos-
iting can also be used for the semi-transparent rendering
style, but the errors introduced can be noticeable or detected.
Accordingly, coverage map compositing is preferably used
by the semi-transparent tiles unit 229 for semi-transparent
texel data computation.

The viewer 110 can also create a texture tile by filtering.
The texture rendering unit 214 can preferably control the tile
creation by filtering. When the viewer 110 determines a
texture tile is to be created, a check is made to see if the four
tiles that reside “underneath” the target tile were already
created. If so, the target tile can be computed directly by
filtering from these four tiles. The filtering performed pref-
erably uses the box filter described above. Generally, cre-
ating a tile by filtering one level below is much faster than
rasterizing the tile directly. Thus, the compositing heuristics
described above are not always required.

Regardless of the creation process, the controller 210 of
the viewer 110 preferably manages texture tiles and deter-
mines how tiles are managed within the context of the chip
pyramid 300 given a limited supply of the main memory
104.

As a user changes viewpoints, texture tiles are created and
rendered on the display. If left unchecked, the number of
texture tiles created and, correspondingly, the amount of
memory consumed would grow to the full size of the
pyramid. As described above, the memory footprint of a full
tiled texture pyramid for a large size IC layout could be on
the order of terabytes and is prohibitive.

Accordingly, the controller 210 preferably creates a fixed
size texture tile cache 232 in the viewer 110. Computed
texture tiles are placed into the texture tile cache 232. When
a tile is created and there is no room left in the cache 232,
a suitable tile is found to replace. Due to the spatial locality
of viewing IC layouts, a least recently used (LRU) policy
has been determined to have good performance for the
texture tile cache. However, the present invention is not
intended to be so limited and the controller 210 can use other
policies for the texture tile cache 232.

The size of the texture tile cache 232 is preferably set
large enough to avoid capacity conflicts and small enough
such that the cache 232 can fit into the main memory 104 of
a host platform. If the cache is so large that the application
memory footprint does not fit into the host platform’s main
memory, then performance is degraded. The time spent
recomputing a texture tile is generally less than the time
needed to swap a computed texture tile from disk. Using a
texture tile cache to store portions of the TTP insures a
bounded memory consumption of the present invention.

Showing a design at full screen view is a very common
operation in VLSI layout editors and layout viewers.
Preferably, for user satisfaction the full screen view of the
VLSI design should be fast or have a reduced time until
display. Further, the full screen view can often be the default
and/or initial view. However, the top of the chip pyramid 300
is the most time-consuming to compute. In contrast, the
memory cost of these tiles is small. Accordingly, since
Applicant determined that having these tiles always avail-
able for display is beneficial, the controller 210 preferably
precomputes a small number of tiles that make up the upper
levels of the chip pyramid 300.

First, the controller 210 must determine how many upper
levels of a chip pyramid to precompute. A preferred heuristic
is to select the level that coincides with a full screen view
when the application window is the same size as the screen

10

15

20

25

30

35

40

45

50

55

60

65

16

150. Further, a pyramid cap memory or the texture memory
234 is preferably separate from the texture tile cache 232 and
allocated specifically for the tiles in upper levels of the chip
pyramid (e.g., above the third transition T3 308). However,
the present invention is not intended to be so limited. For
example, the pyramid cap memory 234 can be located in the
texture tile cache 232, if guarantees are provided so that
eviction is prohibited. Finally, according to the preferred
embodiments, layer coverage information is preferably
stored in an uncomposited form in the pyramid cap memory
234 so the tiles can be recreated quickly during a global
appearance change.

Frequent operations used by the layout viewer 110
involves hiding layers, changing the order in which layers
are displayed, or displaying layers with different colors or
transparencies. Such changes require all texture tiles to be
recreated even though the design data has not changed. To
prevent such problems, coverage map information is pref-
erably kept for the lowest precomputed level in the texture
tile portion of the chip pyramid, so that the tiles can be
recreated quickly if a global appearance change is made. The
lowest precomputed level is preferably stored in pyramid
cap memory 234.

An example will now be provided that illustrates creation
and use of the data structure. For this example, assume that
the top three levels of the chip pyramid are precomputed.
The dimensions of the top three levels are 1x1, 2x2, and 4x4
for a total of 21 texture tiles, and the lowest level (the 4x4
level) will have the associated coverage maps. Consider a
setup that supports 16 viewable layers, and tiles that are 256
texels on a side. The total memory requirement for the
coverage maps is (256x256x16x16) 16 MB assuming each
coverage map element is represented by 1 byte. Each texture
tile’s memory cost is (256x256x4) 256 KB, making the cost
for 21 tiles 5.25 MB. Accordingly, the total memory cost of
the structure of the pyramid cap is 21.25 MB. Procedurally,
to create the precomputed portion, coverage maps are made
as described above. Next, the bottom-most level is created
using the coverage map compositing described above.
Lastly, the higher-level pyramid tiles are created by using
the standard box filtering technique.

Now when a global change to the view of the drawn VLSI
design occurs, the computation required to recreate the top
portion of the pyramid is limited only to recompositing the
coverage maps. The recompositing computation time is
constant and not dependent on the size of the VLSI design
or the number of layout objects contained within.

The hierarchy controller unit 216 of the viewer 110
preferably determines and controls mipmaps for pre-
rasterized versions of sub-designs. An IC layout or VLSI
design explicitly reuses sub-blocks in the same or multiple
chip layers and the viewer 110 preferably re-uses selected
sub-designs in the form of instantiated hierarchy. A majority
of the processing effort (e.g., computational time) spent in
creating a texture tile comes from visiting each polygon in
that tile. The computational time can be reduced if the
instantiated sub-blocks are pre-rasterized such that iterating
over the polygons so represented is unnecessary.

The hierarchy cache 236 is a block of preallocated
memory that is preferably used to store pre-rasterized ver-
sions of sub-designs having significant reuse or repetition in
the VLSI design. Each pre-rasterized sub-design is prefer-
ably a complete mipmap for that sub-design. Preferably, the
mipmaps are not tiled texture pyramids, because the data is
not used directly by the graphics subsystem 120. Pre-
rasterized mipmaps of selected sub-designs are directly
copied into the chip pyramid 300 as needed.

US 6,886,148 B2

17

The hierarchy controller unit 216 preferably selects sub-
designs to pre-rasterize by using cells with the highest
number of instantiations and largest areas to increase or
maximize the utility of the hierarchy cache 236. In the case
that two sub-designs are instantiated the same number of
times, the larger sub-design is selected since more area will
be covered in the base layout. Once such a ranking has been
established, the hierarchy controller unit 216 determines
which of the sub-designs to pre-rasterize since the hierarchy
cache 236 is of finite size.

The hierarchy controller unit 236 preferably computes an
utility for each sub-design and ranks the sub-designs from
highest to lowest utility. The utility of a sub-design can be
determined by the following equation:

Utility=(number of instantions)*(sub-design area)

®

The hierarchy controller unit 216 sequentially evaluates
the preferably ranked list and computes complete mipmaps
for all layers in each sub-design. The memory cost of each
sub-design is subtracted from the available memory. Thus,
sub-designs are continually placed in the hierarchy cache
236 until the allocated memory space is depleted. Should the
main design fit into the hierarchy cache 236, the size of the
VLSI design is small and the entire VLSI layout will be
pre-rasterized.

The format of the pre-rasterized hierarchy data is prefer-
ably the same as the coverage map information described by
the coverage map unit 226. As described above, the data
needs to be kept as coverage map information so that correct
compositing can be done when the texture tiles are created
and flexibility is allowed for color combinations. FIG. 8
shows an exemplary representation of how the data is stored.
A sub-design at LOD 0 802 exists in canonical form. At the
LOD of the first transition T1, each layer in the sub-design
is rasterized into a coverage map shown as 804. Then, for
each additional LOD 806, 808, and 810, the coverage maps
are filtered with the box filter.

Accordingly, the hierarchy data is not kept by the hierar-
chy controller unit 216 for the lowest levels of the chip
pyramid. Evaluations performed determined overall pro-
cessing resulted in a net benefit (e.g., reduced computations)
when the hierarchy controller unit 216 omitted the lowest
levels. Accordingly, the lowest levels can be rasterized
independent of sub-design information at the those levels.
Further, resulting benefits exceed tile creation speed at the
lowest levels. Since the lowest two levels represent '¥is ths
of the total data structure memory cost, eliminating the
lowest two levels makes room for 16x more information in
a hierarchy cache of fixed size. This allows for larger designs
to be pre-rasterized, which in turn makes the hierarchy cache
more effective in speeding up the creation of texture tiles
where it is used.

The polygon rendering unit 212 of the viewer 110 draws
the rectangles or polygons directly to the screen using the
canonical form of the VLSI design. As described above, as
the user viewpoint moves closer to the base LOD, the tiled
texture pyramid ends, and the chip pyramid results in the
rectangles being drawn directly. The point at which the
transition occurs (e.g., the first transition T1 LOD 304 in
FIG. 3) is related to the dimensions of the rectangles to be
drawn. For example, drawing rectangles directly with
dimensions less than a prescribed amount disadvantageously
generates aliasing artifacts.

Selectively drawing rectangles directly has various
advantages. First, other shapes such as stipples, labels, and
rulers can be applied to the layout more clearly when
rectangles are drawn. Further, no memory is consumed or

10

15

20

25

30

35

40

45

50

55

60

65

18

allocated when rectangles are drawn and the contents of the
texture tile cache are undisturbed. According to the preferred
embodiments, drawing rectangles is not necessary, however,
conflicts in the tile cache are reduced or avoided by drawing
rectangles to enhance rendering performance.

Regardless of the speed at which the drawing information
required for textures is determined, there will still be a finite
amount of time to create the necessary texture tiles. The
drawing time delay can cause a stutter in the responsiveness
of an end application such as the viewer 110. To reduce or
mitigate this delay, the chip pyramid 300 preferably allows
the viewer 110 to use a multi-threaded approach for textures.
The multi-threading display unit 218 preferably controls one
thread to render the texture tiles on the display while one or
more additional threads are tasked with creating the tiles.
Since a tiled approach is used, and each texture tile is
completely independent of any other, an N “creator” threads
can be used to achieve at most an N speedup, if N processors
are available on the host platform.

In the case where the drawing thread does not have all of
the texture tiles available, the multi-threading display unit
218 preferably searches a higher level of the chip pyramid
for another texture tile that covers the same area. A tile from
a higher level in the pyramid will be a coarser view of the
desired area, but the lower resolution view of the VLSI
layout is preferable to delays or even displaying nothing to
a user. In addition, the viewer 110 preferably pre-computes
the top part of the chip pyramid. Thus, the coarser view of
the entire VLSI layout will always be available for use.

As a result of the multi-threading display unit 218, even
as the viewpoint changes very quickly, a layout is displayed
even if the layout may become fuzzy because the necessary
texture tiles have not yet been created. As the viewpoint
remains constant, and the necessary tiles are created, the
image preferably is refined according to the viewer 110.

FIG. 9 is a flowchart that outlines a first preferred embodi-
ment of a method for drawing a VLSI layout. First, after
starting in step S900, in step S905 a canonical form of a
VLSI layout design is transmitted from a mass storage
device such as the mass storage device 108 to the VLSI
viewer 110 and preferably placed into a working memory
such as the main memory 104. Thus, the canonical form is
preferably an expression of all or a portion of polygons in
the VLSI design in some reduced or minimal database
format. The specific location of the canonical expression in
the VLSI editor is not critical, but data access times are
substantially reduced to the main memory 104.

In step S910, a rendering or chip pyramid structure is
initialized and the LOD parameters are computed based on
the polygons forming the VLSI layout. The initializing of
the chip pyramid structure includes base dimensions (LOD
0) of the VLSI layout from the canonical form of the VLSI
layout design. The value of LOD 0 is computed from the
bounding box of the underlying VLSI layout given in the
units of the design’s base grid units. Then, remaining LODs
are computed and a first transition threshold T1 between
drawing textures and drawing polygons in the chip pyramid
structure is determined. T1 is preferably heuristically chosen
such that the dimensions of the average polygon of the
closest lower LOD will have a value such that aliasing will
not occur. From T1, a second transition threshold T2 is
chosen at a higher LOD. In the preferred embodiments, T2
was determined to be two LODs higher than T1. Data from
a hierarchy cache such as hierarchy cache 236 is used above
the second transition T2. The hierarchy cache is not used in
levels below T2 in the chip pyramid structure. A preferred
embodiment of a chip pyramid structure shown with base
dimensions, LODs, and transitions T1 and T2 is shown in
FIG. 3.

US 6,886,148 B2

19

In step S915, the hierarchy cache is initialized and the
hierarchy data is computed. The memory size of the hier-
archy cache is arbitrary, but is usually comparable in size to
a texture tile cache.

FIG. 10A is a flowchart showing a first preferred embodi-
ment of a method for initialization of the hierarchy cache of
step S915. First, after starting in step S1000, in step S1005,
a utility metric of each sub-design is computed. The utility
metric is preferably a number that signifies how profitable it
would be to include a sub-design in the hierarchy cache. The
utility metric is preferably determined by the sub-design
area multiplied by the total number of instantiations of the
sub-design in the main design. Next, in step S1010, all the
sub-designs in the main design are ranked by utility metric
from highest to lowest, and the memory cost for placing
each sub-design in the hierarchy cache is computed. The
next step, S1015, the sub-designs are iteratively visited
starting from the highest utility metric unmarked sub-design.
In step S1020, the available hierarchy memory is compared
against the memory cost of this sub-design.

If the cost of this sub-design is determined to be less than
the available hierarchy memory in step S1020, then this
sub-design is placed in the hierarchy cache in step S1025,
and its memory cost is subtracted from the available hier-
archy memory pool. Steps S1015, S1020, and S1025 are
repeated for all sub-designs and only those designs whose
memory requirements are less than the available memory are
placed in the hierarchy cache. If the determination in step
S1020 is affirmative, control jumps to step S1030, where
initialization is complete and control returns to step S920.

FIG. 10B is a flowchart showing a second preferred
embodiment of a method for initialization of the hierarchy
cache of step S915. First, after starting in step S10000, in
step S10005, a utility metric of each sub-design is computed.
The utility metric is preferably a number that signifies how
profitable it would be to include a sub-design in the hierar-
chy cache. The utility metric is preferably determined by the
sub-design area multiplied by the total number of instantia-
tions of the sub-design in the main design. Next, in step
S$10010, all the sub-designs in the main design are ranked by
utility metric from highest to lowest and each sub-design is
set to “unmarked.” Also, the memory cost for placing each
sub-design in the hierarchy cache is computed. The next
step, S10015, the sub-designs are iteratively visited starting
from the highest utility metric unmarked sub-design. In step
S10020, the available hierarchy memory is compared
against the memory cost of this sub-design.

If the cost of this sub-design is determined to be less than
the available hierarchy memory in step S10020, then this
sub-design is marked in step S10025, and its memory cost
is subtracted from the available hierarchy memory pool.
Steps S10015, S10020, and S10025 are repeated until no
additional sub-designs may fit into the hierarchy cache. If
the determination in step S10020 is affirmative, control
jumps to step S10030, where all the sub-designs that were
marked are visited and a check is made in step S10035 to see
if all of a current sub-design’s parents have also been
marked. If the determination in step S10035 is affirmative,
then in step S10040, the current sub-design is unmarked and
its memory cost is added back to the available hierarchy
memory pool. Otherwise, control passes directly from step
S$10045. Steps S10030, S10035, S10040 and S10045 are
repeated until it is determined in step S10045 that each
marked sub-design has been checked.

In step S10050, a check is made to determine if the
previous loop unmarked any sub-designs. If the determina-
tion in step S10050 is affirmative, control jumps back to step

5

10

15

20

25

30

35

40

45

50

55

60

65

20

S10015 to place other additional unmarked sub-designs in
the hierarchy cache. Otherwise, control continues to step
S10055 because no more sub-designs may fit in the hierar-
chy cache. In step S10055, the actual creation of the hier-
archy data is performed. In step S10060, a process for the
initialization of the hierarchy cache is complete and control
returns to step S920. The second preferred embodiment of a
method for initializing the hierarchy cache as shown in FIG.
10B can be considered a less general approach optimized for
viewing.

FIG. 8 is a drawing that shows an exemplary embodiment
for a structure of the hierarchy data created in step S1025.
For each layer in the sub-design, a coverage map is made for
that layer starting at the LOD corresponding to T1. The
coverage maps at the LOD of T1 are preferably created
using the coverage map creation described above. The
subsequent LOD coverage maps are preferably created using
the box filter techniques.

Returning now to FIG. 9, next, in step S920, an LOD
calculation is performed to determine which level of the
rendering pyramid structure is appropriate for the initial
display of the VLSI layout. Preferably, the selected level
allows an initial display to show the entire VLSI layout
within the screen limitations of the selected display.
However, the present invention is not intended to be so
limited. For example, a preselected portion and/or a prese-
lected layer of the VLSI design could be set as the initial
LOD. In step S925, the viewpoint is checked to determine
whether the user viewpoint is far enough away (e.g., a high
enough level on the rendering or chip pyramid structure) for
drawing textures to display the VLSI layout. In step S925,
the current LOD is preferably compared to the computed
first transition T1 for the VLSI layout, and if the user
viewpoint determines textures should be drawn, control
continues to step S930. Otherwise, control continues step
S950 where the current LOD of the user viewpoint falls
beneath the first transition T1 on the chip pyramid structure
so that polygons are drawn directly to the display from the
canonical form of the VLSI layout. The directly drawn
polygons can be formed using an opaque or a semi-
transparent style.

FIG. 11 is a flowchart that shows a first preferred embodi-
ment of the directly drawing polygons process of step S950.
First, after starting in step S1100, in step S1105, each
polygon is preferably opaquely drawn in a front-to-back
layer order. For a front-to-back layer order, polygons are
only drawn to areas not already covered by any previously
drawn polygon in step S1105. Thus, polygons that have been
user-selected to appear “on top” of other polygons appear as
such when displayed. Other techniques could be used, for
example, polygons could be drawn in step S1105 from
back-to-front order so that the later drawn polygons are
allowed to occlude those already drawn. From step S1105,
control continues to step S1110 where it is determined if
semi-transparent rendering is required. If semi-transparent
rendering is determined in step S1110, control continues to
step S1115. Otherwise, control jumps to step S1120.

In step S1115, each polygon is drawn with a user-defined
transparency in a back-to-front order. Thus, polygons are
only drawn in an area that is already covered by a previous
polygon. The prescribed transparency can include various
transparency schemes such as a opacity from 0 to 1 where
0 signifies fully transparent and 1 signifies fully opaque. An
alternative method technique to use in step S1115 draws all
polygons with a defined opacity regardless of whether
another polygon has already been drawn. The effect
produced, however, is that polygons displayed by them-

US 6,886,148 B2

21

selves against the background will appear to blend with
whatever background is used. This artifact can be distracting
for certain backgrounds. The procedure in step S1115
ensures that the polygons that appear by themselves are fully
opaque and independent of the background, while those
polygons that appear on top of others will be correctly
transparent. In step S1120, the drawing polygon process
ends and control returns back to step S960.

Returning to FIG. 9, in step S930, it is determined if
texture data necessary to draw the image in the current LOD
exists. If the texture data in step S930 exists, control
continues to step S940. In step S940, the existing textures
data are drawn to the display screen. From steps S940 and
S950, control continues to step S960, where the process
waits for the user viewpoint to change. Upon detection of a
change in the user viewpoint, control returns to step S920
where the LOD calculation determines which level of the
rendering pyramid structure is appropriate for the newly
selected user viewpoint. Although not shown in FIG. 9,
explicit user commands can prompt the change of user
viewpoint without waiting for completion of the VLSI
layout currently being drawn to the display screen. In this
case, control would also return to step S920 upon indication
of the explicitly selected user viewpoint.

If the determination in step S930 is negative, control
continues to step S935 where the texture data is created. In
step S935, the texture data required for the viewpoint of the
user is created. Texture tiles are preferably stored in a cache
of texture tile memory such as texture tile cache 232. At step
S935 of FIG. 9, more than one texture tiles will generally be
visible on the display. Each of the texels in those tiles are
computed in step S935. Since each texture tile is completely
independent of another, multiple processes can be used in
parallel. Thus, for a VLSI layout editor with N processors,
N texture tiles can be created simultaneously in approxi-
mately the time for one processor to create one texture tile.
The independent concurrent texture tile generation is indi-
cated by the stacked shadow blocks forming step S935.

When a texture tile is needed, preferably, a check is made
to determine whether the texture tile exists in the texture tile
cache due to previous computation. If so, the texture tile is
simply used again from the texture tile cache and an update
time for that texture can be reset (e.g., to a current time). If
a particular texture tile is not available, then it must be
placed in the texture tile cache. If the texture tile cache is
full, any texture tile replacement policy such as least
recently used (LRU) or most recently used (MRU) can be
implemented. However, because of the spatial and temporal
locality of consecutive viewpoints, LRU is preferably used.
Above the transition threshold T2, (e.g., hierarchy data
cutoff threshold) hierarchy data is used in computing the
texture texel values. If the texture tile cache is not full,
however, the texture tile can simply be created and added to
the cache.

FIG. 12 is a flowchart that shows a first preferred embodi-
ment for creating a texture tile. First, after starting at step
S1200, in step S1205, a determination is made whether the
necessary texture tiles “underneath” the current texture tile
are available in the texture tile cache. The definition of
“underneath” is “covering the same area at one LOD below
the current LOD”. If the determination in step S1205 is
affirmative, proceed to step S1210, where the texture tile can
be created directly from the “underneath” tiles. If, however,
the determination in step S1205 is negative since the “under-
neath” texture tiles do not exist, then control continues to
step S1215. In step S1210, the box filter is preferably used
to compute the texture tile. In the box filter, four texels

10

15

20

25

30

35

40

45

50

55

60

65

22

arranged in a square can be averaged down to produce one
texel at an accuracy of one LOD higher. Using the box filter
in step S1210 is usually much faster than step S1215. From
step S1215 and step S1220 where the texture tile has been
created, control continues to step S1220 to terminate.

FIG. 13 outlines a first preferred embodiment of an
opaque texture creation process of step S1215. First, after
starting at step S1300, in step S1308, all texel values are set
to 0. In step S1310, for all layers of the main design, each
polygon is sequentially evaluated in a predetermined order
preferably from front-to-back. An initial polygon for the
predetermined order is chosen as the selected polygon. In
step S13185, for all polygons of the layer, each polygon is
rasterized to determine its coverage over each texel it
overlaps. In step S1320, for all fragments in the polygon,
each fragment is composited into the final texture. Steps
S1310, S1315 and S1320 make up three loop constructs that
iterate over every layer in the main design, every polygon in
the layer, and every fragment in each polygon, respectively.
Each of the three loops check a terminate condition in steps
S1350, S1355, and S1360, respectively. When all three
terminate conditions are true, the control continues to step
S1365, where the process is completed.

In step S1325, the texel ID in question for a fragment is
compared against zero or a predetermined number. The ID
of a fragment or a texel is an integer associated with each
layer of the main design. The ID integers are arbitrarily
assigned and can be any value except zero. If the comparison
to zero is successful in step S1325, the texel has not been
written before, and control continues to step S1330 where
the texel ID is set to the fragment’s ID. From step $S1330,
and if the comparison against zero is negative in step S1325,
control goes to step S1335. In step S1335, the ID of the texel
is compared against the ID of the fragment. If the IDs match
in step S1335, control jumps to step S1345, otherwise
control continues to step S1340.

In step S1345, the texel and fragment are combined
assuming independent overlap as in Equation 1. In step
S1340, the texel and fragment are combined assuming
disjoint overlap as in Equation 4. From steps S1340 and
S1345, control continues to step S1350. In step S1350,
processing a single fragment is complete, and a determina-
tion is made whether additional fragments exist. If the
determination in step S1350 is affirmative, control returns to
step S1320. Otherwise, control continues to step S1355. If
more polygons or layers should be processed, the previous
steps will be repeated via processing in steps S1355, S1360
as shown in FIG. 13. Otherwise, the process terminates at
step S1365, where control returns to step S1215.

FIG. 14 is a flowchart that shows a first preferred embodi-
ment of the semi-transparent texture creation process of step
S1215. First, after starting in step S1400, in step S1405, all
the texels are initially set to zero. In step S1410, for all layers
of the main design, each layer of polygons is iterated over
in a back-to-front ordering. Starting with the first layer,
control continues to step S1415 where the temporary scratch
coverage map is initialized to all zero. In step S1420, each
polygon in the layer is rasterized and its coverage over each
texel is computed. For every fragment of the polygon, in step
S1425, the fragment amounts are accumulated into the
temporary scratch coverage map. Steps S1425 and S1430
are repeated for each fragment of the polygon and steps
S1420 through S1435 are repeated for each polygon in the
layer. If the determination in step S1435 is negative since all
the polygons in one layer have been accumulated into the
temporary scratch coverage map, control continues to step
S1440 where the values in the scratch coverage map are

US 6,886,148 B2

23

composited into the final texture tile preferably in accor-
dance with equations 6—8 described above. In step S1445, an
affirmative determination that additional layers exist to
process returns control to step S1410. Otherwise, control
continues to step S1450, since all layers have been pro-
cessed. In step S1450 the process ends and control returns to
step S1215.

FIG. 15 is a flowchart that shows a first preferred embodi-
ment of a process for using hierarchy data in the creation of
the texture tiles. Exemplary hierarchy data according to
preferred embodiments is shown in FIG. 8. The format of the
hierarchy data is preferably coverage maps that contains
fragment information for chosen sub-designs. Compositing
hierarchy data into a final texture is faster than without when
the coverage maps are not sparse because the processes
needed for rasterization as described in FIGS. 13-14 are
avoided. As described above, however, FIGS. 13—-14 do not
show exactly where and how the hierarchy data is used in
creating both opaque and semi-transparent texture tiles. FIG.
15 shows such combinations.

After starting at step S1500, step S1505 iterates over
every layer to be composited. In step S1510, a check is made
to compare the current LOD against the LOD of the second
transition T2. The second transition T2 signifies the point at
which hierarchy data is used. If the determination in step
S1510 is affirmative, control continues to step S1515 in
which no hierarchy data is used and preferred embodiments
as described in FIGS. 1314 are respectively used. However,
if the determination in step S1514 is negative, then control
jumps to step S1520 where the sub-designs that overlap the
texture tile are evaluated. In step S1525, for each coverage
map relating to the current layer, each fragment of the
coverage is evaluated. In step S1530, the fragments are
composited according to preferred embodiments as
described in FIGS. 13—14 depending on the current render-
ing style. In step S1535, if it is determined additional
fragments exist, control returns to step S1525. Otherwise,
once all coverage map elements for each sub-design have
been evaluated, control shifts to step S1540 where the
remaining polygons that were not part of any chosen hier-
archical sub-design are processed according to preferred
embodiments as described in FIGS. 13-14. From steps
S1515 and S1540 control continues to step S1545, where it
is determined if any layers remain to process. If all layers
have been processed in step S1545, control continues to step
S1550, where the process ends. Otherwise, control returns to
step S1505.

Various exemplary embodiments of the present invention
have been repeatedly tested and compared to existing sys-
tems using the following equipments. The test platform was
a Sun Microsystems Ultra 60 workstation with two 450
MHz UltraSparcll processors, 2 GBs of main memory, and
an Expert3D graphics card. The OpenGL graphics library
version 1.2.1 was used to render the designs, and the
operating system was Solaris 2.7. In the comparisons, an
exemplary implementation according to preferred embodi-
ments of the present invention will be called “gll.ayout-
View.”

Experiments were run to compare the performance of
glLayoutView, the Magic Layout System (version 6.5a), and
two popular commercial tools, A and B. The Magic Layout
System is a publicly available free VLSI design tool. Tool A
is primarily used as a layout editor, while tool B is primarily
used for viewing large designs. Both of the commercial tools
A and B have the ability to draw a scaled rectangle condi-
tionally based on a user-defined threshold. The user-defined
feature was turned off in both tools for the following

10

15

20

25

30

35

40

45

50

55

60

65

24

comparison, since gllayoutView draws all rectangles
regardless of their scaled size.

A large VLSI design with substantial hierarchy, “SU__
Block,” and a large VLSI design with no hierarchy, “Flash,”
were compared. Table 1 lists the statistics for the two
designs.

TABLE 1
Total Unique
Rectangles Rectangles Design Size
Flash 4,893,834 4,893,834 156K x 156K
SU__Block 14,855,372 833,820 50K x 54K

The Flash design is a flat layout containing the three metal
and two contact layers of the Flash MAGIC Chip.
SU__Block is a collection of custom designs containing
fifteen assorted metal, active, and contact layers with three
times the number of total rectangles, but only ¥6 the number
of unique rectangles as the Flash design. The ratio of unique
to total rectangles is used to reflect how much hierarchy
exists in the design. The last column shows the dimensions
of the designs in grid units at the base level. For illustration,
if the SU_ Block and Flash VLSI design were treated as
images or image mipmaps, the size of the image files for
only the base level would be 73 GB for Flash and 7.5 GB for
SU__Block.

For all tests, gll.ayoutView was configured with 256x256
texel tiles, a 64 MB texture tile cache, a 64 MB hierarchy
cache and a pyramid cap memory stored four precomputed
levels. The dimensions of the base level, level zero, when
multiplied by 256 are approximately the values in the
column labeled “Design Size” of Table 1.

The first performance test compared the tools static ren-
dering performance in rendering the entire design once. For
each design and tool, redraw time is recorded for a window
sized 1280x1024 pixels. The re-draw time results in
seconds, to draw each design once at a full screen view are
shown in Table 2.

TABLE 2
Flash SU__Block
Magic 21.5 71
B 18.5 76
A 3.8 18

Since gll.ayoutView is multi-threaded, the actual redraw
time of the screen is fixed and dependent on the graphics
capabilities of the host platform. For an Expert3D graphics
card, this time is between 0.01 and 0.25 seconds depending
on the number of tiles to draw and whether the tiles have
been loaded into the graphics accelerator. For gllayoutView,
the 1280x1024 window size best corresponds to pyramid
level five (49 tiles) in SU__Block, and level seven (25 tiles)
in the Flash design. For comparison to Table 2, the baseline
and following numbers for gllayoutView are the times to
create and initially draw the texture tiles for the appropriate
view. Table 3 lists redraw times, in seconds, for glLayout-
View broken down into the three main parts of rendering
performance: the time to process or “walk” the design
database, the time to compute the textures, and the time to
drive the graphics display with the texture data.

US 6,886,148 B2

25 26
TABLE 3 TABLE 4
Flash SU_Block 0(6) 1(12) 324 6(48)
Baseline 7.0 6.1 5 Flash
Coverage Map Compositing 7.0 7.1
No Hierarchy Cache 7.0 19 Magic 69 139 276 531
Global Change Time 0.9 3.1 B 57 87 151 265
X2 processors 35 3.1 A 15 26 48 86
x4 processors 1.8 1.7 glLay View 8 8 8 8
10 SU__Block
Magic 212 444 929 1816

As shown in Table 3, the “baseline” is the time for B 218 433 700 1293
gllLayout View to create the tiles necessary to draw the entire gLay View 55 9; 183 35;
d651gnd 1m.ptllentllent1ng the ch(lip .pyramlld. Tbe tliles dwere 15
created with the opaque rendering style using the direct . .

» rat p (Il 1 glL Y (Vi s < sionifi Table 4 shows total redraw times, in seconds, of the two
compositing strategy. I all cases, gllayoul VIew 1S sightil- designs from different viewpoints. The column headings
cantly faster or comparable to the other tools in performing represent the number of intermediate viewpoints that were
this task. The second row shows the time to create the tiles drawn. The total number of rendered frames is shown in
using the coverage map compositing for semi-transparent 20 parentheses. gllayoutView was run using the chip pyramid
tiles. Both times are about the same as the baseline since the including a multi-threaded factor Of.tW0~)
rectangle computation time swamps out the memory access The first colu.mn shows the cqmbmed amount Qf tume (o
. i render the designs from the six main viewpoints. The
time that can slow down the coverage map compositing. The . . .
hird line shows the effect of the hierarchy cache. The Flash remaining columns show the time (o render the designs
t e e " ; . Y T 25 when a different number of intermediate viewpoints are also
design’s time is the same since it contains no hierarchy, rendered. As the number of intermediate viewpoints is
while the SU_Block design’s time shows a 3x slowdown increased, the movement more closely resembles a smooth
versus the baseline time, demonstrating the value of the animated motion. The effects of the texture tile cache are
hierarchy cache. demonstrated because the render times for gll.ayoutView are

30 constant.

As shown in Table 3, the fourth row shows the effects of FIG. 16A shows gllLayoutView rendering the SU__Block
pre-computing the top of the chip pyramid. In both designs, VLSI design. FIG. 16B shows a drawing of the SU_ Block
this recomputation time is beneficially faster than the time to ~ using the hierarchy cache. The areas shown in FIG. 16B
draw it from scratch. Accordingly, this time reflects a delay ~ represent the portions of the design that are contained in the
in redrawing the entire screen if a global change were made 3% hierarchy cache. Approx1ma.tely 52% of the viewable area is
to the appearance of the design. The faster recomputation covered by qata f.rom the hierarchy ca(.:he. .

. o FIG. 17Ais a diagram that shows an image of a die photo

time for Flash versus SU__ Block is likely due to the smaller . . .
ber of lavers present. The last two. lines show redraw of another VLSI design. FIG. 17B is a diagram that shows
famber ot layers pi ’ a synthesized image according to a preferred embodiment of
times when parallelized across Fwo or four processors. In the ,; e present invention of the design, which highlights the

four processor case, gllayoutView was run on a 4x400 MHz photo-realistic results.

UltraSparc II processor system, and the 3.6 speedup was As described above, preferred embodiments of a VLSI
computed by comparing the 1x and 4x tests on this system. layout editor and methods for using same have various
advantages. Preferred embodiments according to the present

Although the rendering times of gllLayoutView (Table 3) 45 invention save and reuse selected parts of the image over
compares favorably with the other tools (Table 2), the actual again, using for example texture mapping, to render the
user experience is even better because the tile creation time VLSI layouts, and make sure the image on the screen is
penalty is only paid each time a tile is not present in the optically accurate. Su(.:h reuse also allows the creation of
texture tile cache. The computational cost of moving the texture tiles on multiple processors that simultancously
viewpoint a small amount is nearly zero, while the cost for 50 allow for the rendering process to be sped up by a factor

. Lo .. related to the number of processors. Further, the preferred
the other tools is the same as drawing it from the original
. . . embodiments use hierarchy by explicitly computing and
viewpoint. Thus, to draw a full screen view one hundred . b-desi dup the disol. Pol
i hy t for gll.ayoutView is the time to draw the using sub-designs [0 speed up the display process. Folygons
times, the cos for gll.ay . : are directly drawn from the canonical form of the VLSI
screen once, while thf.: cpst for the other tools is the time to design at some LODs where texture data is ignored. In
draw the screen multiplied by one hundred. addition, the preferred embodiments implement a chip pyra-
. L mid having multiple regions using different operations or
To try to quantify such behavior, in the second perfor- VNG pe 18 g P
. . combinations of operations responsive to a particular VLSI
mance test each tool was made to go through a series of six design
(6) viewpoint changes ipcluding full screen view, zoom of ¢, e foregoing embodiments and advantages are merely
2xon the upper .left portion Of. the design, zoom of 2xon the exemplary and are not to be construed as limiting the present
upper tht portion of th.e design, zoom of 2x on the lower invention. The present teaching can be readily applied to
rlghF portion of t.he design, zoom Of.2>< on the lower l.eft other types of apparatuses. The description of the present
portion of the design, and full screen view. Effects of reusing invention is intended to be illustrative, and not to limit the
textures can be measured if the number of intermediate 65 scope of the claims. Many alternatives, modifications, and

viewpoints to render between the six main viewpoints is
varied.

variations will be apparent to those skilled in the art. In the
claims, means-plus-function clauses are intended to cover

US 6,886,148 B2

27

the structures described herein as performing the recited
function and not only structural equivalents but also equiva-
lent structures.

What is claimed is:

1. An apparatus, comprising:

a first memory that stores a representation of an integrated

circuit (IC) layout having a plurality of layers; and

a controller coupled to the first memory that generates a

displayable representation of ordered layers of the IC
layout that tracks changes in a user viewpoint, wherein
the displayable representation comprises a precom-
puted image that represents a part of the IC layout, and
wherein the precomputed image is used in two or more
user viewpoints.

2. The apparatus of claim 1, wherein the precomputed
image is a stored image that can be used again.

3. The apparatus of claim 2, wherein the precomputed
image is a texture.

4. The apparatus of claim 2, wherein the stored image is
generated by a graphics application and stored by the
controller.

5. The apparatus of claim 1, wherein the controller
determines a chip pyramid structure having a plurality of
levels corresponding to the representation of the IC layout,
wherein the levels are each a level of detail (LOD) from a
base LOD to a top LOD, wherein the top LOD includes more
area of the displayable representation of the VLSI layout
than the base LOD, and wherein the displayable represen-
tation is generated using the chip pyramid structure.

6. The apparatus of claim 5, wherein the IC layout
representation is determined by a canonical expression.

7. The apparatus of claim 5, wherein the plurality of levels
of the chip pyramid structure are based on scaled powers of
two (2).

8. The apparatus of claim 5, further comprising a filter that
filters data forming the displayable representation so that the
data is represented at different levels of the chip pyramid.

9. The apparatus of claim 5, wherein the chip pyramid
structure has a first transition threshold, wherein the dis-
playable representation is generated from at least the pre-
computed image in levels above the first transition
threshold, and wherein the displayable representation is
generated directly from the IC layout representation below
the first transition threshold.

10. The apparatus of claim 9, wherein an LOD of the first
transition is determined based on an average shorter dimen-
sion of objects of the IC layout.

11. The apparatus of claim 9, wherein an LOD of the first
transition threshold (T1) is determined by 2°“?”* = (average
minimum dimension of each element in the IC layout)/
(smallest desired element drawn to a display screen).

12. The apparatus of claim 9, wherein the directly gen-
erated displayable representation is drawn to a display
screen and discarded.

13. The apparatus of claim 9, wherein a prescribed
amount of precomputed portions are stored in a second
memory with a prescribed priority scheme, and wherein the
precomputed image comprises the precomputed portions.

14. The apparatus of claim 13, wherein the precomputed
portions are determined responsive to a viewpoint change.

15. The apparatus of claim 14, wherein the viewpoint
change includes magnification, selected layer, number of
layers, order of layers, selected colors, tile rendering style
and relative position vertically over the IC layout, and
wherein the precomputed portions contain only data
required for display.

16. The apparatus of claim 14, wherein current precom-
puted portions replace previous precomputed portions as the

10

15

20

25

30

35

40

45

50

55

60

65

28

viewpoint changes according to the priority scheme, and
wherein the precomputed portions contain only data
required for a current display window size.

17. The apparatus of claim 13, wherein the precomputed
portions model objects of the IC layout less than a pixel in
dimension.

18. The apparatus of claim 13, wherein the precomputed
portions model objects of the IC layout that occur on
non-pixel boundaries.

19. The apparatus of claim 13, wherein the precomputed
portions representing the objects are generated according to
destination color (C,,) and destination coverage (ot ,,,) and
source color (C,,.) and source coverage (c,,.), a resulting
color (C,,) and resulting coverage (c,,) generated by
opaque compositing according to the following equations:

@
@
O

wherein if an incoming object component is from an iden-
tical layer then the following equation

)

O =(1=Cse) 0t
)

Olgsr =Olgsit g

;
Cost™=CasrtCorcOsye

s
Oy, =min(1-Clyp O,c)

@

is used where a texel layer identifier can be used with C,,
and o, otherwise equation (1) is used.

20. The apparatus of claim 13, wherein the precomputed
portions representing the objects are generated according to
destination color (C,,,) and destination coverage (o), and
source color (C,,.) source coverage (a,.), and opacity
(Uprona)» @ Tesulting color (C,.,) and resulting coverage (¢t ,,)
generated by compositing according to the following equa-
tions:

Clpten =1~ (ClprendQlass) ®
ey = e e +1 (1~ o) O Q)
Ctst™=0ptenat OsrCorct1(1=Clptend)Cass .

21. The apparatus of claim 13, wherein the controller
independently performs determination of data that repre-
sents the precomputed portions and display of the precom-
puted portions.

22. The apparatus of claim 9, wherein the chip pyramid
structure has a second transition threshold, wherein the
controller determines selected elements of the IC layout,
wherein displayable hierarchy data representations are pre-
computed for each of the selected elements for each level of
the chip pyramid structure above the second transition
threshold.

23. The apparatus of claim 22, wherein the selected
elements are determined based on frequency of use and
respective size in the displayable representation.

24. The apparatus of claim 23, wherein the precomputed
image comprises textures stored in a second memory,
wherein the displayable hierarchy data representations com-
prise a mipmap for each of the selected elements for all
levels of the chip pyramid structure above the second
transition threshold, and wherein the displayable hierarchy
data representations are stored in a third memory.

25. The apparatus of claim 24, wherein the mipmaps are
based on scaled power of two (2).

26. The apparatus of claim 22, wherein the chip pyramid
has a third transition threshold, wherein the displayable
representation is based on a precomputed representation of
the IC layout at said each LOD above the third transition
threshold.

US 6,886,148 B2

29

27. The apparatus of claim 26, wherein an LOD of the
third transition threshold is based on at least one of a
corresponding display screen size and a corresponding dis-
play resolution.

28. The apparatus of claim 27, wherein a prescribed
amount of precomputed portions forming the precomputed
image are stored using a prescribed priority in a second
memory, wherein the precomputed representation is stored
in the second memory with a higher priority, and wherein the
selected elements are stored in a third memory.

29. The apparatus of claim 28, wherein rendering a full
screen view of the IC layout uses the precomputed
representations, wherein the precomputed representations
are permanently stored in the second memory.

30. The apparatus of claim 1, wherein the controller
independently performs determination of data that repre-
sents the displayable representation including the precom-
puted image and display of the displayable representation.

31. The apparatus of claim 30, wherein each precomputed
portions included in the precomputed image is independent
from the other precomputed portions, and wherein a plural-
ity of precomputed portions are concurrently determined by
the controller.

32. The apparatus of claim 31, wherein the controller
comprises a plurality of independent processors that provide
a multi-threaded implementation that separates determina-
tion of texture data and graphical rendering of the texture
data comprising the precomputed portions.

33. The apparatus of claim 1, wherein a prescribed
amount of precomputed portions are stored in a second
memory with a prescribed priority scheme, and wherein the
precomputed image comprises the precomputed portions,
and wherein the precomputed portions model objects of the
IC layout less than a pixel in dimension.

34. The apparatus of claim 1, wherein a prescribed
amount of precomputed portions are stored in a second
memory with a prescribed priority scheme, and wherein the
precomputed image comprises the precomputed portions,
and wherein the precomputed portions model objects of the
IC layout that occur on non-pixel boundaries.

35. The apparatus of claim 9, wherein the precomputed
image is one of a texture and a pixmap.

36. An apparatus, comprising:

means for loading an integrated circuit (IC) information

into a first memory;

means for determining a chip pyramid having a plurality

of levels of detail (LOD) from a first LOD to a last LOD
according to the IC layout information;

means for determining precomputed hierarchy data for

selected sub-designs in an IC above a first transition
threshold in the chip pyramid and storing the hierarchy
data in a second memory;

means for determining a selected LOD in the chip pyra-

mid to display the IC according to an input viewpoint;
and

means for displaying the IC by using the IC information

to directly display polygons when the selected LOD is
below the first transition threshold and for displaying
the IC using at least the hierarchy data above the first
transition threshold.

37. The apparatus of claim 36, further comprising means
for displaying the IC layout using a stored precomputed
image that represents a portion of the IC information,
wherein the precomputed image is used in two or more user
viewpoints, wherein the precomputed image is used above a
second transition threshold that is between the first LOD and
the first transition threshold.

10

15

20

25

30

35

40

45

50

55

60

65

30

38. A method of modeling an integrated circuit (IC),
comprising:
loading a layout of the IC into a first storage device;

determining a chip pyramid having a plurality of levels of
detail (LOD) from a base LOD to a top LOD according
to the IC layout;

determining prescribed hierarchy data for selected sub-
designs in the IC and storing the hierarchy data in a
second storage device;

determining a selected LOD in the chip pyramid to
display the IC layout according to an input viewpoint;

displaying the IC layout using at least the hierarchy data
when the selected LOD is above a first threshold; and

displaying the IC layout by using the IC layout from the
first storage device to directly display the IC layout
when the selected LOD is below the first threshold.

39. The method of claim 38, further comprising repeating
the displaying steps responsive to the input viewpoint when
the input viewpoint is changed, and wherein the input
viewpoint comprises magnification, selected layer, number
of layers, order of layers, selected colors, tile rendering style
and relative position vertically over the IC layout.

40. The method of claim 38, further comprising display-
ing the IC layout using a stored precomputed image that
represents a portion of the IC layout, wherein the precom-
puted image is used in two or more user viewpoints, wherein
the precomputed image is used above a second transition
threshold that is between the base LOD and the first tran-
sition threshold.

41. The method of claim 40, wherein the precomputed
image and the prescribed hierarchy data comprise textures,
and wherein displaying the IC layout using textures above
the second threshold comprises:

displaying stored texture tile data forming viewable tex-

tures when stored textures contain each of said view-
able textures; and

creating the texture tile data forming the viewable textures

when the stored textures do not contain said viewable
textures.

42. The method of claim 41, wherein the creating texture
tile data comprises:

filtering the stored textures to form a current texture when

required stored textures exist; and

rasterizing and compositing polygons forming the texture

tile data according to a prescribed rendering style when
the required stored textures do not exist.

43. The method of claim 42, wherein the rasterizing and
compositing polygons comprises independently determining
an opacity for each layer.

44. The method of claim 41, comprising independently (a)
determining the data that represents the textures and (b)
displaying the textures.

45. The method of claim 44, wherein a plurality of
textures are independent from each other, and wherein data
that represents the plurality of textures are concurrently
determined.

46. The apparatus of claim 3, wherein the precomputed
image is a pixmap.

47. An apparatus, comprising:

a first memory that stores a representation of an integrated

circuit (IC) layout having a plurality of layers; and

a controller coupled to the first memory that generates a

displayable representation of ordered layers of the IC
layout that tracks changes in a user viewpoint, wherein
the displayable representation comprises a precom-

US 6,886,148 B2

3

puted image that represents a part of the IC layout, and
wherein the precomputed image is used in two or more
user viewpoints, wherein each precomputed portions
included in the precomputed image is independent from
the other precomputed portions, and wherein the con-
troller comprises a plurality of independent processors

32

that provide a multi-threaded implementation that sepa-
rates determination of texture data and graphical ren-
dering of the texture data comprising the precomputed
portions.

	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract

